Publicity to a Manuka Honey Wound Gel Is Related With Adjustments in Bacterial Virulence and Antimicrobial Susceptibility
Using manuka honey for the topical therapy of wounds has elevated worldwide owing to its broad spectrum of exercise in the direction of micro organism in each planktonic and biofilm development modes. Regardless of this, the potential penalties of bacterial publicity to manuka honey, as could happen through the therapy of persistent wounds, will not be absolutely understood.
Right here, we describe adjustments in antimicrobial susceptibility and virulence in a panel of micro organism, together with wound isolates, following repeated publicity (ten passages) to sub-inhibitory concentrations of a manuka honey primarily based wound gel. Adjustments in antibiotic sensitivity above 4-fold had been predominantly associated to elevated vancomycin sensitivity within the staphylococci.
Curiously, Staphylococcus epidermidis displayed phenotypic resistance to erythromycin following passaging, with susceptibility profiles returning to baseline within the absence of additional honey publicity. Adjustments in susceptibility to the examined wound gel had been average (≤ 1-fold) when in comparison with the respective guardian pressure.
In sessile communities, elevated biofilm eradication concentrations over 4-fold occurred in a wound isolate of Pseudomonas aeruginosa (WIBG 2.2) as evidenced by a 7-fold discount in gentamicin sensitivity following passaging. On the subject of pathogenesis, 4/eight micro organism exhibited enhanced virulence following honey wound gel publicity. Within the pseudomonads and S. epidermidis, this occurred together with elevated haemolysis and biofilm formation, while P. aeruginosa additionally exhibited elevated pyocyanin manufacturing.
The place virulence attenuation was famous in a passaged wound isolate of S. aureus (WIBG 1.6), this was concomitant to delayed coagulation and decreased haemolytic potential. Total, passaging within the presence of a manuka honey wound gel led to adjustments in antimicrobial sensitivity and virulence that various between take a look at micro organism.
Description: A Rabbit polyclonal antibody against Rat Gelsolin (GS). This antibody is labeled with Biotin.
×
Thermo-Tunable Pores and Antibiotic Gating Properties of Bovine Pores and skin Gelatin Gels Ready with Poly(n-isopropylacrylamide) Community
Polystyrene nanospheres (PNs) had been embedded in bovine pores and skin gelatin gels with a poly(N-isopropylacrylamide) (PNIPAAm) community, which had been denoted as NGHHs, to generate thermoresponsive habits. When 265 nm PNs had been exploited to generate the pores, bovine pores and skin gelatin prolonged to utterly occupy the pores left by PNs beneath the decrease vital answer temperature (LCST), forming a pore-less construction.
Contrarily, above the LCST, the collapse of hydrogen bonding between bovine pores and skin gelatin and PNIPAAm occurred, leading to pores within the NGHH. The habits of pore closing and opening beneath and above the LCST, respectively, signifies the superb drug gating effectivity.
Amoxicillin (AMX) was loaded into the NGHHs as sensible antibiotic gating as a result of pore closing and opening habits. Accordingly, E. coli. and S. aureus had been exploited to check the micro organism inhibition ratio (BIR) of the AMX-loaded NGHHs. BIRs of NGHH with out pores had been 48% to 46.7% at 25 and 37 °C, respectively, for E. coli throughout 12 h of incubation time.
The BIRs of nanoporous NGHH could possibly be enhanced from 61.5% to 90.4% offering a wise antibiotic gate of bovine pores and skin gelatin gels in opposition to irritation from an infection or harm irritation.
Discrimination of extremely degraded, aged Asian and African elephant ivory utilizing denaturing gradient gel electrophoresis (DGGE)
Background: Elephant populations have vastly decreased primarily on account of unlawful poaching for his or her ivory. The commerce in elephant merchandise is protected by nationwide legal guidelines and CITES agreements to stop them from additional decline. For example, in Thailand, it’s unlawful to commerce ivory from African elephants; nonetheless, the legislation permits possession of ivory from Asian elephants if permission has been obtained from the authorities.
As such, technique of enforcement of laws are wanted to categorise the authorized standing of seized ivory merchandise. Many DNA-based methods have been beforehand reported for this function, though all have a restrict of detection not appropriate for very degraded samples.
Intention: We report an assay primarily based on nested PCR adopted by DGGE to substantiate the authorized or unlawful standing of seized ivory samples the place it’s assumed that the DNA can be extremely degraded.
Technique and outcomes: The assay was examined on aged ivory from which the assay was examined for reproducibility, specificity, and, importantly, sensitivity. Blind testing confirmed 100% identification accuracy. Appropriate task in all 304 samples examined was achieved together with affirmation of the authorized standing of 227 extremely degraded, aged ivories, thus underlining the excessive sensitivity of the assay.
Conclusion and suggestion: The analysis output can be helpful to research ivory casework samples in wildlife forensic laboratories.
Results of Emicizumab on APTT, FVIII assays and FVIII Inhibitor assays utilizing completely different reagents: Outcomes of a UK NEQAS proficiency testing train
Introduction: Emicizumab (Hemlibra: Roche Switzerland) is a, humanized, bi-specific monoclonal modified immunoglobulin G4 (IgG4) which binds human FX, FIX and activated FIX (FIXa) to imitate activated FVIII exercise.
Intention: Consider the consequences of emicizumab on the APTT, surrogate FVIII exercise and FVIII inhibitor outcomes.
Strategies: Two samples had been offered, one obtained from an emicizumab handled extreme haemophilia A affected person with FVIII inhibitors and one constructed by in vitro addition of emicizumab utilizing plasma from a extreme haemophilia A affected person with out FVIII inhibitors. An APTT display, surrogate FVIII and FVIII inhibitor assessments had been carried out on each samples by collaborating centres.
Outcomes: APTT outcomes had been beneath the decrease restrict of regular vary. Chromogenic FVIII assay outcomes with the Hyphen/Biophen human component-based assay gave larger than anticipated coefficient of variation (CV) outcomes, 38%-40%. The modified one-stage FVIII assay with emicizumab calibrators confirmed comparable outcomes whatever the APTT reagent. Inhibitor assay median outcomes for pattern S18:23 = 1.43 BU (vary 0.9-3.Zero BU/ml, CV 38%). S18:24 was categorized as beneath the decrease restrict of detection.
Conclusion: APTT screens confirmed a constant shortening. Unmodified one-stage Issue VIII assay outcomes had been remarkably excessive. APTT-based assays are unsuitable for measurement of coagulation components or inhibitors in sufferers handled with emicizumab. Bovine origin chromogenic assays are insensitive to emicizumab and ought to be used to observe FVIII ranges/FVIII inhibitors in emicizumab handled sufferers. Product-specific calibrators ought to be carried out to scale back end result variability.
Identification of Immunohistochemical Reagents for In Situ Protein Expression Evaluation of Coronavirus-associated Adjustments in Human Tissues
We studied the suitability of commercially out there monoclonal antibodies (mAbs) for the immunohistochemical (IHC) detection of extreme acute respiratory syndrome coronavirus 2 (SARS-CoV2) in customary archival specimens. Antibodies had been screened on HEK293 cells transfected with viral nucleoprotein, S1 subunit and S2 subunit of spike protein and on untransfected cells, in addition to a panel of regular tissue.
Lung tissue with presence of SARS-CoV2 confirmed by in situ hybridization (ISH) was additionally used. A complete of seven mAbs had been examined: (1) mAb 001 (Sino Organic, 40143-R001), (2) mAb 007 (Sino Organic, 40150-R007), (3) mAb 019 (Sino Organic, 40143-R019), (4) mAb 1A9 (GeneTex, GTX632604), (5) mAb ABM19C9 (Abeomics, 10-10007), (6) FIPV3-70 (Santa Cruz, SC-65653), and (7) mAb 6F10 (BioVision, A2060). Solely 2 mAbs, clone 001 to the nucleoprotein and clone 1A9 to the S2 subunit spike protein displayed particular immunoreactivity.
Each clones confirmed sturdy staining within the acute part of COVID-19 pneumonia, largely in areas of acute diffuse alveolar injury, however weren’t utterly congruent. Viral protein was additionally present in kidney tubules, endothelia of a number of organs and a nasal swab of a affected person with persistent SARS-CoV2 an infection.
Description: A polyclonal antibody against GSN. Recognizes GSN from Human, Mouse, Rat. This antibody is Unconjugated. Tested in the following application: ELISA, IHC;ELISA:1:1000-1:2000, IHC:1:25-1:100
Description: A polyclonal antibody against GSN. Recognizes GSN from Human, Mouse, Rat. This antibody is Unconjugated. Tested in the following application: ELISA, IHC;ELISA:1:2000-1:5000, IHC:1:50-1:200
Description: A polyclonal antibody against GSN. Recognizes GSN from Human, Mouse, Rat. This antibody is Unconjugated. Tested in the following application: ELISA, WB, IHC
Description: A polyclonal antibody against GSN. Recognizes GSN from Human. This antibody is Unconjugated. Tested in the following application: ELISA, WB, IHC, IF; Recommended dilution: WB:1:500-1:5000, IHC:1:20-1:200, IF:1:50-1:200
Description: The protein encoded by this gene binds to the "plus" ends of actin monomers and filaments to prevent monomer exchange. The encoded calcium-regulated protein functions in both assembly and disassembly of actin filaments. Defects in this gene are a cause of familial amyloidosis Finnish type (FAF). Multiple transcript variants encoding several different isoforms have been found for this gene.
Description: The protein encoded by this gene binds to the 'plus' ends of actin monomers and filaments to prevent monomer exchange. The encoded calcium-regulated protein functions in both assembly and disassembly of actin filaments. Defects in this gene are a cause of familial amyloidosis Finnish type (FAF). Multiple transcript variants encoding several different isoforms have been found for this gene.
Description: The protein encoded by this gene binds to the 'plus' ends of actin monomers and filaments to prevent monomer exchange. The encoded calcium-regulated protein functions in both assembly and disassembly of actin filaments. Defects in this gene are a cause of familial amyloidosis Finnish type (FAF). Multiple transcript variants encoding several different isoforms have been found for this gene.
Description: Gelsolin (also known as brevin, Actin-depolymerizing factor or ADF), a proteinof leukocytes, platelets and other cells, severs Actin filaments in thepresence of submicromolar calcium, thereby isolating cytoplasmic Actin gels. It is a calcium-regulated, actin-modulating protein that binds to the plus (or barbed) ends of actin monomers or filaments, preventing monomer exchange (end-blocking or capping). It can promote the assembly of monomers into filaments (nucleation) as well as sever filaments already formed. Plays a role in ciliogenesis. Defects in GSN are the cause of amyloidosis type 5 (AMYL5); also known as familial amyloidosis Finnish type, typically characterized by cranial neuropathy and lattice corneal dystrophy. Severe systemic disease can develop in some individuals causing peripheral polyneuropathy, amyloid cardiomyopathy, and nephrotic syndrome leading to renal failure.
Description: Gelsolin (also known as brevin, Actin-depolymerizing factor or ADF), a proteinof leukocytes, platelets and other cells, severs Actin filaments in thepresence of submicromolar calcium, thereby isolating cytoplasmic Actin gels. It is a calcium-regulated, actin-modulating protein that binds to the plus (or barbed) ends of actin monomers or filaments, preventing monomer exchange (end-blocking or capping). It can promote the assembly of monomers into filaments (nucleation) as well as sever filaments already formed. Plays a role in ciliogenesis. Defects in GSN are the cause of amyloidosis type 5 (AMYL5); also known as familial amyloidosis Finnish type, typically characterized by cranial neuropathy and lattice corneal dystrophy. Severe systemic disease can develop in some individuals causing peripheral polyneuropathy, amyloid cardiomyopathy, and nephrotic syndrome leading to renal failure.
Description: Gelsolin (also known as brevin, Actin-depolymerizing factor or ADF), a proteinof leukocytes, platelets and other cells, severs Actin filaments in thepresence of submicromolar calcium, thereby isolating cytoplasmic Actin gels. It is a calcium-regulated, actin-modulating protein that binds to the plus (or barbed) ends of actin monomers or filaments, preventing monomer exchange (end-blocking or capping). It can promote the assembly of monomers into filaments (nucleation) as well as sever filaments already formed. Plays a role in ciliogenesis. Defects in GSN are the cause of amyloidosis type 5 (AMYL5); also known as familial amyloidosis Finnish type, typically characterized by cranial neuropathy and lattice corneal dystrophy. Severe systemic disease can develop in some individuals causing peripheral polyneuropathy, amyloid cardiomyopathy, and nephrotic syndrome leading to renal failure.
Description: A peptide coupling reagent. Can be used in the preparation of phenyl esters of amino acids which have been shown to be valuable as blocked derivatives of amino acids in the field of peptide synthesis.
Description: A peptide coupling reagent. Can be used in the preparation of phenyl esters of amino acids which have been shown to be valuable as blocked derivatives of amino acids in the field of peptide synthesis.
Description: A polyclonal antibody against GSN. Recognizes GSN from Human. This antibody is FITC conjugated. Tested in the following application: ELISA
Description: A polyclonal antibody against GSN. Recognizes GSN from Human. This antibody is Biotin conjugated. Tested in the following application: ELISA
Description: Esophagus tissue lysate was prepared by homogenization in lysis buffer (10 mM HEPES pH7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM ethylenediaminetetraacetic acid, 10% glycerol, 1% NP-40, and a cocktail of protease inhibitors). Tissue and cell debris was removed by centrifugation. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Ileum tissue lysate was prepared by homogenization in lysis buffer (10 mM HEPES pH7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM ethylenediaminetetraacetic acid, 10% glycerol, 1% NP-40, and a cocktail of protease inhibitors). Tissue and cell debris was removed by centrifugation. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Rectum tissue lysate was prepared by homogenization in homogenization in lysis buffer (10 mM HEPES pH7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM ethylenediaminetetraacetic acid, 10% glycerol, 1% NP-40, and a cocktail of protease inhibitors). Tissue and cell debris was removed by centrifugation. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Skin tissue lysate was prepared by homogenization in lysis buffer (10 mM HEPES pH7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM ethylenediaminetetraacetic acid, 10% glycerol, 1% NP-40, and a cocktail of protease inhibitors). Tissue and cell debris was removed by centrifugation. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Thyroid tissue lysate was prepared by homogenization in lysis buffer (10 mM HEPES pH7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM ethylenediaminetetraacetic acid, 10% glycerol, 1% NP-40, and a cocktail of protease inhibitors). Tissue and cell debris was removed by centrifugation. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Spleen tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Bladder tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Cerebellum tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Cerebrum tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Pancreas tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Stomach tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Testis tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Adrenal tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Skin tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Eye tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Trachea tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Lung tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Liver tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Kidney tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Spleen tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: L1210 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The L1210 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: C2C12 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The C2C12 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: P815 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The P815 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: EL4 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The EL4 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Lung tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Spleen tissue lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Placenta tissue lysate was prepared by homogenization in lysis buffer (10 mM HEPES pH7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM ethylenediaminetetraacetic acid, 10% glycerol, 1% NP-40, and a cocktail of protease inhibitors). Tissue and cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The product was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Jurkat lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The Jurkat lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: MOLT4 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The MOLT4 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: HL60 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The HL60 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: T24 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The T24 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: U937 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The U937 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: MCF7 lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The MCF7 lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Ramos lysate was prepared by homogenization in modified RIPA buffer (150 mM sodium chloride, 50 mM Tris-HCl, pH 7.4, 1 mM ethylenediaminetetraacetic acid, 1 mM phenylmethylsulfonyl fluoride, 1% Triton X-100, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 μg/ml of aprotinin, 5 μg/ml of leupeptin. Cell debris was removed by centrifugation. Protein concentration was determined with Bio-Rad protein assay. The Ramos lysate was boiled for 5 min in 1 x SDS sample buffer (50 mM Tris-HCl pH 6.8, 12.5% glycerol, 1% sodium dodecylsulfate, 0.01% bromophenol blue) containing 50 mM DTT.
Description: Bovine kidney tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The bovine kidney tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the kidney tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The kidney tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Bovine liver tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The bovine liver tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the liver tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The liver tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Guinea Pig heart tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The guinea pig heart tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the heart tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The heart tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Guinea Pig kidney tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The guinea pig kidney tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the kidney tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The kidney tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Cynomolgus) adrenal tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Cynomolgus) adrenal tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the adrenal tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The adrenal tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Cynomolgus) colon tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Cynomolgus) colon tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the colon tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The colon tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Cynomolgus) gallbladder tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Cynomolgus) gallbladder tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the gallbladder tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The gallbladder tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Cynomolgus) kidney tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Cynomolgus) kidney tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the kidney tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The kidney tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Cynomolgus) lung tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Cynomolgus) lung tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the lung tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The lung tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Cynomolgus) skin tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Cynomolgus) skin tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the skin tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The skin tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Cynomolgus) spleen tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Cynomolgus) spleen tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the spleen tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The spleen tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Rhesus) brain tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Rhesus) brain tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the brain tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The brain tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.
Description: Monkey (Rhesus) colon tissue lysate was prepared by homogenization using a proprietary technique. The tissue was frozen in liquid nitrogen immediately after excision and then stored at -70°C. The monkey (Rhesus) colon tissue total protein is provided in a buffer including HEPES (pH 7.9), MgCl2, KCl, EDTA, Sucrose, Glycerol, Sodium deoxycholate, NP-40, and a cocktail of protease inhibitors. For quality control purposes, the colon tissue pattern on SDS-PAGE gel is shown to be consistent for each lot by visualization with coomassie blue staining. The colon tissue is then Western analyzed by either GAPDH or β-actin antibody, and the expression level is consistent with each lot.